24 research outputs found

    Semantic knowledge integration for learning from semantically imprecise data

    Get PDF
    Low availability of labeled training data often poses a fundamental limit to the accuracy of computer vision applications using machine learning methods. While these methods are improved continuously, e.g., through better neural network architectures, there cannot be a single methodical change that increases the accuracy on all possible tasks. This statement, known as the no free lunch theorem, suggests that we should consider aspects of machine learning other than learning algorithms for opportunities to escape the limits set by the available training data. In this thesis, we focus on two main aspects, namely the nature of the training data, where we introduce structure into the label set using concept hierarchies, and the learning paradigm, which we change in accordance with requirements of real-world applications as opposed to more academic setups.Concept hierarchies represent semantic relations, which are sets of statements such as "a bird is an animal." We propose a hierarchical classifier to integrate this domain knowledge in a pre-existing task, thereby increasing the information the classifier has access to. While the hierarchy's leaf nodes correspond to the original set of classes, the inner nodes are "new" concepts that do not exist in the original training data. However, we pose that such "imprecise" labels are valuable and should occur naturally, e.g., as an annotator's way of expressing their uncertainty. Furthermore, the increased number of concepts leads to more possible search terms when assembling a web-crawled dataset or using an image search. We propose CHILLAX, a method that learns from semantically imprecise training data, while still offering precise predictions to integrate seamlessly into a pre-existing application

    Integrating domain knowledge: using hierarchies to improve deep classifiers

    Full text link
    One of the most prominent problems in machine learning in the age of deep learning is the availability of sufficiently large annotated datasets. While for standard problem domains (ImageNet classification), appropriate datasets exist, for specific domains, \eg classification of animal species, a long-tail distribution means that some classes are observed and annotated insufficiently. Challenges like iNaturalist show that there is a strong interest in species recognition. Acquiring additional labels can be prohibitively expensive. First, since domain experts need to be involved, and second, because acquisition of new data might be costly. Although there exist methods for data augmentation, which not always lead to better performance of the classifier, there is more additional information available that is to the best of our knowledge not exploited accordingly. In this paper, we propose to make use of existing class hierarchies like WordNet to integrate additional domain knowledge into classification. We encode the properties of such a class hierarchy into a probabilistic model. From there, we derive a special label encoding together with a corresponding loss function. Using a convolutional neural network, on the ImageNet and NABirds datasets our method offers a relative improvement of 10.4% and 9.6% in accuracy over the baseline respectively. After less than a third of training time, it is already able to match the baseline's fine-grained recognition performance. Both results show that our suggested method is efficient and effective.Comment: 9 pages, 7 figure

    Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding

    Full text link
    Classifying single image patches is important in many different applications, such as road detection or scene understanding. In this paper, we present convolutional patch networks, which are convolutional networks learned to distinguish different image patches and which can be used for pixel-wise labeling. We also show how to incorporate spatial information of the patch as an input to the network, which allows for learning spatial priors for certain categories jointly with an appearance model. In particular, we focus on road detection and urban scene understanding, two application areas where we are able to achieve state-of-the-art results on the KITTI as well as on the LabelMeFacade dataset. Furthermore, our paper offers a guideline for people working in the area and desperately wandering through all the painstaking details that render training CNs on image patches extremely difficult.Comment: VISAPP 2015 pape

    ROMEO: Exploring Juliet through the Lens of Assembly Language

    Full text link
    Automatic vulnerability detection on C/C++ source code has benefitted from the introduction of machine learning to the field, with many recent publications considering this combination. In contrast, assembly language or machine code artifacts receive little attention, although there are compelling reasons to study them. They are more representative of what is executed, more easily incorporated in dynamic analysis and in the case of closed-source code, there is no alternative. We propose ROMEO, a publicly available, reproducible and reusable binary vulnerability detection benchmark dataset derived from the Juliet test suite. Alongside, we introduce a simple text-based assembly language representation that includes context for function-spanning vulnerability detection and semantics to detect high-level vulnerabilities. Finally, we show that this representation, combined with an off-the-shelf classifier, compares favorably to state-of-the-art methods, including those operating on the full C/C++ code.Comment: 6 pages, code available at https://gitlab.com/dlr-dw/rome
    corecore